Saravana Pandian Annamalai
25. April 2019 · Write a comment · Categories: ARM, Embedded Software · Tags: , , ,

In our earlier blogs on ARM Interrupt architectures, we explored the ARM exception models and registers. Also, we went through different kinds of Interrupt controllers being used. In the upcoming blogs, we will primarily see ARM Interrupt handling from the firmware/software perspective including operating systems like FreeRTOS, Linux and WinCE. To being with, this blog will discuss interrupt handling in ARM Cortex M MCUs.

Cortex M Vector Table

As discussed earlier, the ARM Cortex M series of MCUs typically carters to lower end application with the core running between a few MHz to a maximum 150MHz. To target low cost tools and ease of development, the interrupt architecture is designed to be simpler and straight forward. The vector table in ARM Cortex M series looks like:

Cortex M Vector Table

Typically, on power-on reset, the Vector table base address is defined to be at 0. The ARM core, up on boot up, loads the stack pointer with the value stored at offset 0. And then it loads the Program counter with the address available at offset 4 and starts executing the same.

Thus, the vector table design is such that the stack is operational before the core starts executing thereby eliminating the need for an assembly code to set things up for calling functions. In the firmware perspective, this is a major advantage. There is no need to write any assembly code.

Following these 2 words, the table should hold the addresses of the exception handlers. The first 14 of them are pre-defined ad reserved for handling specific to the core and its execution. From offset, 0x40, the SoC specific interrupt handlers are defined and can be customized by the silicon vendor.

It can also be noted that there is a priority associated with each of these exceptions. Lower the number the higher the priority. Some of the major exceptions defined by ARM are

Reset Handler

At the highest priority of -3, this is the entry point of execution. Loaded to PC on power on reset, this is responsible for initializing the system peripherals and start executing the firmware/OS.

NMI Handler

At a priority only next to Reset Handler (-2), as the name suggests this cannot be masked by software. It is typically triggered by a specialized peripheral unit that can be connected to a critical functionality.

HardFault Handler

This exception is caused when there is an error during exception processing. At a higher priority of -1 than other exception, this can be used to recover from issues during exception handling.

MemManage Handler

Caused due to memory protection faults, the priority level can be configured by the firmware.

BusFault Handler

Caused during to memory access – either during instruction fetch or data access, the priority level can be configured by the firmware

UsageFault Handler

Caused during to instruction executing, the priority level can be configured by the firmware. The handler is called when one of the following errors occurs

  • Presence of an undefined instruction
  • Performing an illegal unaligned access
  • Core in invalid state on instruction execution
  • An error occurring on exception return.
  • Doing an unaligned address on word and halfword memory access
  • Performing division by zero

SVCall Handler

Known as the Supervisor Call, this handler is called up on the core executing a SVC instruction. This is typically used in OS environments to execute system services.

PendSV Handler

This is typically used in OS environments to perform context switching.

SysTick Handler

The ARM Cortex M core defines a specialize timer module to keep track of the System time. This handler is executed once this timer value reaches 0.

With this understanding of Cortex M vector table, now we will see how the firmware handles exceptions in software.

Cortex M Vector Table

To practically understand Cortex M Interrupt handling, we will take an example of software implementation of FreeRTOS running on NXP K66 MCU compiled using GCC tool chain. The first and foremost step is to define the vector table and place it in the Vector base location. The vector table for the device looks like this:

__attribute__ ((used, section(“.isr_vector”)))

void (* const g_pfnVectors[])(void) = {

// Core Level – CM4

&_vStackTop,                            // The initial stack pointer

ResetISR,                                   // The reset handler

NMI_Handler,                           // The NMI handler

HardFault_Handler,                   // The hard fault handler

MemManage_Handler,              // The MPU fault handler

BusFault_Handler,                     // The bus fault handler

UsageFault_Handler,                 // The usage fault handler

0,                                                // Reserved

0,                                                // Reserved

0,                                                // Reserved

0,                                                // Reserved

SVC_Handler,                           // SVCall handler

DebugMon_Handler,                // Debug monitor handler

0,                                               // Reserved

PendSV_Handler,                     // The PendSV handler

SysTick_Handler,                     // The SysTick handler

 

// Chip Level – MK66F18

DMA0_DMA16_IRQHandler,       // 16 : DMA Channel 0, 16 Transfer Complete

DMA1_DMA17_IRQHandler,       // 17 : DMA Channel 1, 17 Transfer Complete

DMA2_DMA18_IRQHandler,       // 18 : DMA Channel 2, 18 Transfer Complete

:

:

UART0_RX_TX_IRQHandler,      // 47 : UART0 Receive/Transmit interrupt

:

:

CAN1_Tx_Warning_IRQHandler,  // 113: CAN1 Tx warning interrupt

CAN1_Rx_Warning_IRQHandler,  // 114: CAN1 Rx warning interrupt

CAN1_Wake_Up_IRQHandler,      // 115: CAN1 wake up interrupt

 

}; /* End of g_pfnVectors */

As it can be seen, the interrupt handlers are clubbed together as an array with the address to the top of the stack (lowest address as it grows towards higher address) as the first element. This array is placed in address 0, via linker script mechanism. In this example, using the section (.isr_vector) keyword, the location of the vector table is set to 0.

Also, it can be noted that there are hundreds of interrupt handlers supported. Even this example has close to 115 handlers. Obviously, a firmware system will not have all these implemented, hardly 20-30 interrupts will be used in a system. Instead of asking the user to define handlers, the start-up code provided by the silicon vendors, will have dummy functions (a while (1) loop) defined with weak reference.

weak void NMI_Handler(void)

{ while(1) {}

}

WEAK_AV void SVC_Handler(void)

{ while(1) {}

}

So, when the developer defines an interrupt handler with the same name in his code, this weak function will be discarded and user-defined function linked against instead.

Cortex M Interrupt Handling

With the vector table installed, the functions that are needed can be added one by one in the firmware. As a first step, the Reset Handler has to be created. At typical, reset handler will look like as below.

void ResetISR(void) {

// Disable interrupts

__asm volatile (cpsid i”);

// If __USE_CMSIS defined, then call CMSIS SystemInit code

SystemInit();

//

// Copy the data sections from flash to SRAM.

//

unsigned int LoadAddr, ExeAddr, SectionLen;

unsigned int *SectionTableAddr;

// Load base address of Global Section Table

SectionTableAddr = &__data_section_table;

// Copy the data sections from flash to SRAM.

while (SectionTableAddr < &__data_section_table_end) {

LoadAddr = *SectionTableAddr++;

ExeAddr = *SectionTableAddr++;

SectionLen = *SectionTableAddr++;

data_init(LoadAddr, ExeAddr, SectionLen);

}

// At this point, SectionTableAddr = &__bss_section_table;

// Zero fill the bss segment

while (SectionTableAddr < &__bss_section_table_end) {

ExeAddr = *SectionTableAddr++;

SectionLen = *SectionTableAddr++;

bss_init(ExeAddr, SectionLen);

}

// Reenable interrupts

__asm volatile (cpsie i”);

main();

//

// main() shouldn’t return, but if it does, we’ll just enter an infinite loop

//

while (1) {

;

}

}

This minimalistic handler, disables all interrupts up on entry, configures the core and major peripherals via SystemInit function. Then it initializes the data and bss sections. Finally, it enables the interrupts before jumping to the main function.

Now we will see how a peripheral is configured for interrupt operation based on the Systick unit.

uint32_t SysTick_Config(uint32_t ticks)

{

if ((ticks – 1UL) > SysTick_LOAD_RELOAD_Msk)

{

return (1UL); /* Reload value impossible */

}

SysTick->LOAD = (uint32_t)(ticks – 1UL); /* set reload register */

NVIC_SetPriority (SysTick_IRQn, (1UL << __NVIC_PRIO_BITS) – 1UL); /* set Priority for Systick Interrupt */

SysTick->VAL = 0UL; /* Load the SysTick Counter Value */

SysTick->CTRL = SysTick_CTRL_CLKSOURCE_Msk |

SysTick_CTRL_TICKINT_Msk |

SysTick_CTRL_ENABLE_Msk; /* Enable SysTick IRQ and SysTick Timer */

return (0UL); /* Function successful */

}

As the code listing shows, the function configures various registers needed for proper operation of the Systick interrupt such as LOAD, VAL, CTRL etc. IT=t also configures the priority of the interrupt. As mentioned earlier, in Cortex M architecture, each of the interrupts has an associated priority. Depending on the implementation, there could be n number of bits corresponding to each interrupt number. Lower the number, higher the priority/urgency and can be set via the NVIC_SetPriority CMSIS API. With this mechanism, it is possible for the interrupts to be prioritized and only the higher priority one will be serviced if more than one interrupt is pending at the same time.

Typical handler for SysTick looks like:

void SysTickHandler( void )

{

/* The SysTick runs at the lowest interrupt priority, so when this interrupt

executes all interrupts must be unmasked. There is therefore no need to

save and then restore the interrupt mask value as its value is already

known. */

         portDISABLE_INTERRUPTS();

         {

                    /* Increment the RTOS tick. */

                    if( xTaskIncrementTick() != pdFALSE )

                   {

                                  /* A context switch is required. Context switching is performed in the PendSV interrupt. Pend the PendSV interrupt. */

                            portNVIC_INT_CTRL_REG = portNVIC_PENDSVSET_BIT;

                  }

         }

     portENABLE_INTERRUPTS();

}

Cortex M Interrupt Handling via Assembly

So far, we have not writing a single line of assembly code and still able to do all the required functionality in software. In some cases, there will be a need to do assembly code. In these cases, the handler can be defined as naked function (Which will not generate any stack push/pop and return codes) and implement them in assembly.

For example, in FreeRTOS, the SVC Handler implementation is as below:

void vPortSVCHandler( void ) __attribute__ (( naked ));

void vPortSVCHandler( void )

{

     __asm volatile (

     ldr r3, pxCurrentTCBConst2 \n” /* Restore the context. */

     ldr r1, [r3] \n” /* Use pxCurrentTCBConst to get the pxCurrentTCB address. */

     ldr r0, [r1] \n” /* The first item in pxCurrentTCB is the task top of stack. */

     ldmia r0!, {r4-r11, r14} \n” /* Pop the registers that are not automatically saved on exception entry and the critical nesting count. */

     msr psp, r0 \n” /* Restore the task stack pointer. */

     isb \n”

     mov r0, #0 \n”

     msr basepri, r0 \n”

     bx r14 \n”

     ” \n”

     ” .align 4 \n”

     “pxCurrentTCBConst2: .word pxCurrentTCB \n”

     );

}

Thus with compiler extensions, it is possible to include assembly based interrupt handling as well.

Switching Vector tables

In the above examples, we have noted that the vector table is located at address 0. But there are cases, where we will need to place it at a different location. For example, the flash location could be at address 0, and the RAM, where the user wants to place the vector table could be elsewhere. Or it could be a dual A/B firmware or a bootloader/application firmware each sitting at a different location. So, based on the current code being executed, the vector table location differs.

ARM provides a simple mechanism to switch the base address of the vector table. It provides a Vector table offset register at address 0xE000ED08 in the NVIC group, where the base address can be programmed. For example, to switch the vector location to address 0x20000000, following lines will suffice.